This paper presents a new procedure for evaluating the goodness of fit of Generalized Linear Models (GLM) estimated with Roadway Departure (RwD) crash frequency data for the State of Hawaii on two-lane two-way (TLTW) state roads. The procedure is analyzed using ten years of RwD crash data (including all severity levels) and roadway characteristics (e.g., traffic, geometry, and inventory databases) that can be aggregated at the section level. The three estimation methods evaluated using the proposed procedure include: Negative Binomial (NB), Zero-Inflated Negative Binomial (ZINB), and Generalized Linear Mixed Model-Negative Binomial (GLMM-NB). The procedure shows that the three methodologies can provide very good fits in terms of the distributions of crashes within narrow ranges of the predicted mean frequency of crashes and in terms of observed vs. predicted average crash frequencies for those data segments. The proposed procedure complements other statistics such as Akaike Information Criterion, Bayesian Information Criterion, and Log-likelihood used for model selection. It is consistent with those statistics for models without random effects, but it diverges for GLMM-NB models. The procedure can aid model selection by providing a clear visualization of the fit of crash frequency models and allowing the computation of a pseudo R2 similar the one used in linear regression. It is recommended to evaluate its use for evaluating the trade-off between the number of random effects in GLMM-NB models and their goodness of fit using more appropriate datasets that do not lead to convergence problems.
翻译:本文提出一种新的程序,用于评价通用线性模型(GLM)是否适合与夏威夷州双行双行公路(TLTW)州公路上的双行公路(TLTW)坠毁频率数据相匹配。该程序使用10年的RwD坠毁数据(包括所有严重程度)和公路特点(如交通、几何和库存数据库)进行分析,可在科一级汇总。使用拟议程序评估的三种估算方法包括:负比诺米阿尔(NB)、零加热负比诺米阿尔(ZINB)和通用线性线性混合模型(GLMM-NB)坠毁频率数据。三种方法可以提供非常适合的碰撞分布于预测平均频率的狭小范围内的碰撞分布,并用观测到的数据平均碰撞频率的预测频率。拟议的程序补充了Akaike Inform Criticion(NB)信息标准、零加内负负比度信息标准(ZINB)和类似日(LI)的其他统计数据, 用于选择模型的模型的精确度的精确性模型。该程序为精确性GRBL的精确性模型提供了精确性模型的精确性数据。该模型的精确性模型的精确性数据。该模型的精确性数据与精确性模型的精确性模型的精确性评估。该模型的精确性模型可以提供。