This paper presents a new procedure for evaluating the goodness of fit of Generalized Linear Models (GLM) estimated with Roadway Departure (RwD) crash frequency data for the State of Hawaii on two-lane two-way (TLTW) state roads. The procedure is analyzed using ten years of RwD crash data (including all severity levels) and roadway characteristics (e.g., traffic, geometry, and inventory databases) that can be aggregated at the section level. The three estimation methods evaluated using the proposed procedure include: Negative Binomial (NB), Zero-Inflated Negative Binomial (ZINB), and Generalized Linear Mixed Model-Negative Binomial (GLMM-NB). The procedure shows that the three methodologies can provide very good fits in terms of the distributions of crashes within narrow ranges of the predicted mean frequency of crashes and in terms of observed vs. predicted average crash frequencies for those data segments. The proposed procedure complements other statistics such as Akaike Information Criterion, Bayesian Information Criterion, and Log-likelihood used for model selection. It is consistent with those statistics for models without random effects, but it diverges for GLMM-NB models. The procedure can aid model selection by providing a clear visualization of the fit of crash frequency models and allowing the computation of a pseudo R2 similar the one used in linear regression. It is recommended to evaluate its use for evaluating the trade-off between the number of random effects in GLMM-NB models and their goodness of fit using more appropriate datasets that do not lead to convergence problems.


翻译:本文提出一种新的程序,用于评价通用线性模型(GLM)是否适合与夏威夷州双行双行公路(TLTW)州公路上的双行公路(TLTW)坠毁频率数据相匹配。该程序使用10年的RwD坠毁数据(包括所有严重程度)和公路特点(如交通、几何和库存数据库)进行分析,可在科一级汇总。使用拟议程序评估的三种估算方法包括:负比诺米阿尔(NB)、零加热负比诺米阿尔(ZINB)和通用线性线性混合模型(GLMM-NB)坠毁频率数据。三种方法可以提供非常适合的碰撞分布于预测平均频率的狭小范围内的碰撞分布,并用观测到的数据平均碰撞频率的预测频率。拟议的程序补充了Akaike Inform Criticion(NB)信息标准、零加内负负比度信息标准(ZINB)和类似日(LI)的其他统计数据, 用于选择模型的模型的精确度的精确性模型。该程序为精确性GRBL的精确性模型提供了精确性模型的精确性数据。该模型的精确性模型的精确性数据。该模型的精确性数据与精确性模型的精确性模型的精确性评估。该模型的精确性模型可以提供。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
88+阅读 · 2021年6月29日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月18日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员