Longitudinal imaging forms an essential component in the management and follow-up of many medical conditions. The presence of lesion changes on serial imaging can have significant impact on clinical decision making, highlighting the important role for automated change detection. Lesion changes can represent anomalies in serial imaging, which implies a limited availability of annotations and a wide variety of possible changes that need to be considered. Hence, we introduce a new unsupervised anomaly detection and localisation method trained exclusively with serial images that do not contain any lesion changes. Our training automatically synthesises lesion changes in serial images, introducing detection and localisation pseudo-labels that are used to self-supervise the training of our model. Given the rarity of these lesion changes in the synthesised images, we train the model with the imbalance robust focal Tversky loss. When compared to supervised models trained on different datasets, our method shows competitive performance in the detection and localisation of new demyelinating lesions on longitudinal magnetic resonance imaging in multiple sclerosis patients. Code for the models will be made available on GitHub.
翻译:纵向成像构成许多医学条件的管理和跟踪的一个基本组成部分。序列成像上的损伤变化可能对临床决策产生重要影响,突出自动变化检测的重要作用。感官变化可以代表序列成像中的异常现象,这意味着说明的可用性有限,以及可能需要考虑的各种可能变化。因此,我们引入了一种新的未经监督的异常检测和本地化方法,专门用不包含任何损伤变化的序列图象来培训。我们的培训自动合成序列成像中的损伤变化,引入用于自我监督我们模型培训的检测和本地化假标签。鉴于合成图像中的这些损伤变化的罕见性,我们用不平衡稳健的焦点Tversky损失来培训模型。与在不同的数据集上培训的监督模型相比,我们的方法在检测和本地化不包含任何损伤变化的序列图象方面表现出竞争性的性能。在多感应激素患者的长度磁共振成像上,我们将在模型代码上公布在GitHubb。