Autonomous suturing has been a long-sought-after goal for surgical robotics. Outside of staged environments, accurate localization of suture needles is a critical foundation for automating various suture needle manipulation tasks in the real world. When localizing a needle held by a gripper, previous work usually tracks them separately without considering their relationship. Because of the significant errors that can arise in the stereo-triangulation of objects and instruments, their reconstructions may often not be consistent. This can lead to unrealistic tool-needle grasp reconstructions that are infeasible. Instead, an obvious strategy to improve localization would be to leverage constraints that arise from contact, thereby constraining reconstructions of objects and instruments into a jointly feasible space. In this work, we consider feasible grasping constraints when tracking the 6D pose of an in-hand suture needle. We propose a reparameterization trick to define a new state space for describing a needle pose, where grasp constraints can be easily defined and satisfied. Our proposed state space and feasible grasping constraints are then incorporated into Bayesian filters for real-time needle localization. In the experiments, we show that our constrained methods outperform previous unconstrained/constrained tracking approaches and demonstrate the importance of incorporating feasible grasping constraints into automating suture needle manipulation tasks.


翻译:自动缝合是手术机器人长期追求的目标。除了分阶段的环境外,缝合针针的准确本地化是使现实世界中各种缝合针管操作任务自动化的关键基础。当将针头固定在握手的针头上时,以往的工作通常在不考虑其关系的情况下分别跟踪针头。由于立体三角体和仪器的立体三角体中可能出现重大错误,它们的重建往往不一致。这可能导致不切实际的工具需要抓紧重建,这是行不通的。相反,改进缝合针头的准确本地化的明显战略将是利用接触产生的限制,从而将物体和仪器的重建限制到一个共同可行的空间。在这项工作中,我们考虑在追踪6D构成的手头缝合针头针头时,可以切实地抓住各种限制。我们提议重新确定一个重新计数法来界定描述针头姿势的新国家空间,从而容易界定和满足各种限制。我们提议的州空间和可行的掌握制约因素随后会被纳入巴伊西亚州不现实的过滤器管束系统,从而将物体和仪器的重建纳入前针管控管控管系统的重要方法。在试验中,我们展示了对前针管管管管的极限的极限。

1
下载
关闭预览

相关内容

专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月30日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员