Sidon spaces have been introduced by Bachoc, Serra and Z\'emor in 2017 in connection with the linear analogue of Vosper's Theorem. In this paper, we propose a generalization of this notion to sets of subspaces, which we call multi-Sidon space. We analyze their structures, provide examples and introduce a notion of equivalnce among them. Making use of these results, we study a class of linear sets in PG$(r-1,q^n)$ determined by $r$ points and we investigate multi-orbit cyclic subspace codes.
翻译:Bachoc、Serra和 ⁇ 'emor于2017年结合Vosper理论的线性类比引入了Sidon空间。在本文中,我们建议将这一概念概括为子空间组,我们称之为多西登空间。我们分析它们的结构,提供实例,并在它们之间引入等同概念。我们利用这些结果,研究以美元点确定的PG$(r-1,q ⁇ n)为单位的线性一组,我们调查多轨道环球子空间代码。