Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs. The code is publicly available at https://github.com/ChenWu98/cycle-diffusion.
翻译:传播模型在基因模型方面已经取得了前所未有的业绩; 传播模型潜伏代码的通用配方是逐渐去除样本的顺序,而不是较简单的(例如高森)GANs、VAEs和正常流流的潜在空间; 本文提供了另一种选择, 高森配方, 各种传播模型的潜在空间, 以及将图像映入潜藏空间的不可翻转的 DPM- Ecoder 。 虽然我们的配方纯粹基于扩散模型的定义,但我们展示了几种令人感兴趣的后果。 (1) 生动地,我们观察到一种共同的潜在空间来自两个独立在相关领域培训的传播模型。 根据这一发现,我们建议CPM- Encoder 用于不显性图像到图像模型翻译。 此外, 对文本到模拟传播模型应用循环传播, 我们显示, 大规模的文本到模拟传播模型可以用作零光图像到图像编辑的零点。 (2) 在C- prevical化模型中, 将GIP 的预置化模型 和GAN 演示模型 。