Stereoscopic, head-tracked display systems can show users realistic, world-locked virtual objects and environments. However, discrepancies between the rendering pipeline and physical viewing conditions can lead to perceived instability in the rendered content resulting in reduced realism, immersion, and, potentially, visually-induced motion sickness. The requirements to achieve perceptually stable world-locked rendering are unknown due to the challenge of constructing a wide field of view, distortion-free display with highly accurate head- and eye-tracking. In this work we introduce new hardware and software built upon recently introduced hardware and present a system capable of rendering virtual objects over real-world references without perceivable drift under such constraints. The platform is used to study acceptable errors in render camera position for world-locked rendering in augmented and virtual reality scenarios, where we find an order of magnitude difference in perceptual sensitivity between them. We conclude by comparing study results with an analytic model which examines changes to apparent depth and visual heading in response to camera displacement errors. We identify visual heading as an important consideration for world-locked rendering alongside depth errors from incorrect disparity.


翻译:Stereoscopic, head-tracked display systems can show users realistic, world-locked virtual objects and environments. However, discrepancies between the rendering pipeline and physical viewing conditions can lead to perceived instability in the rendered content resulting in reduced realism, immersion, and, potentially, visually-induced motion sickness. The requirements to achieve perceptually stable world-locked rendering are unknown due to the challenge of constructing a wide field of view, distortion-free display with highly accurate head- and eye-tracking. In this work we introduce new hardware and software built upon recently introduced hardware and present a system capable of rendering virtual objects over real-world references without perceivable drift under such constraints. The platform is used to study acceptable errors in render camera position for world-locked rendering in augmented and virtual reality scenarios, where we find an order of magnitude difference in perceptual sensitivity between them. We conclude by comparing study results with an analytic model which examines changes to apparent depth and visual heading in response to camera displacement errors. We identify visual heading as an important consideration for world-locked rendering alongside depth errors from incorrect disparity.

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员