We propose a dialog system utility component that gets the two last utterances of a user and can detect whether the last utterance is an error correction of the second last utterance. If yes, it corrects the second last utterance according to the error correction in the last utterance. In addition, the proposed component outputs the extracted pairs of reparandum and repair entity. This component offers two advantages, learning the concept of corrections to avoid collecting corrections for every new domain and extracting reparandum and repair pairs, which offers the possibility to learn out of it. For the error correction one sequence labeling and two sequence to sequence approaches are presented. For the error correction detection these three error correction approaches can also be used and in addition, we present a sequence classification approach. One error correction detection and one error correction approach can be combined to a pipeline or the error correction approaches can be trained and used end-to-end to avoid two components. We modified the EPIC-KITCHENS-100 dataset to evaluate the approaches for correcting entity phrases in request dialogs. For error correction detection and correction, we got an accuracy of 97.54 % on synthetic validation data and an accuracy of 69.27 % on human-created real-world test data.
翻译:我们提出一个对话框工具组件, 以获取用户最后两个词的用户最后两个词, 并能够检测最后一个词是否是第二个词的错误更正。 如果是, 则根据最后一个词的错误更正纠正第二个最后一个词。 此外, 拟议的组成部分输出了提取的对等对再配和修理实体。 这个组成部分有两个好处, 学习更正概念以避免为每个新域收集更正, 并提取对等和修复对等, 提供了学习它的可能性 。 对于错误更正一个序列标签和两个序列的排序方法, 将显示为错误更正 。 对于错误更正, 这三个错误更正方法也可以使用, 我们提出了一个序列分类方法。 一个错误更正探测和一个错误校正方法可以合并到管道, 或者错误校正方法可以培训和使用端对端对来避免两个组成部分 。 我们修改了 EPIC- KITCHENS- 100 数据集, 以评价在请求对话框中校正实体用语的方法 。 关于错误校正检测和校正方法, 我们获得了97.54% 的精确度, 建立合成验证数据 和69.27 的精确度。