Stable matching in a community consisting of men and women is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley, who designed the celebrated ``deferred acceptance'' algorithm for the problem. In the input, each participant ranks participants of the opposite type, so the input consists of a collection of permutations, representing the preference lists. A bipartite matching is unstable if some man-woman pair is blocking: both strictly prefer each other to their partner in the matching. Stability is an important economics concept in matching markets from the viewpoint of manipulability. The unicity of a stable matching implies non-manipulability, and near-unicity implies limited manipulability, thus these are mathematical properties related to the quality of stable matching algorithms. This paper is a theoretical study of the effect of correlations on approximate manipulability of stable matching algorithms. Our approach is to go beyond worst case, assuming that some of the input preference lists are drawn from a distribution. Our model encompasses a discrete probabilistic process inspired by a popularity model introduced by Immorlica and Mahdian, that provides a way to capture correlation between preference lists. Approximate manipulability is approached from several angles : when all stable partners of a person have approximately the same rank; or when most persons have a unique stable partner. Another quantity of interest is a person's number of stable partners. Our results aim to paint a picture of the manipulability of stable matchings in a ``beyond worst case'' setting.


翻译:在由男女组成的社区中,稳定的匹配是一个典型的组合问题,自1962年Gale和Shapley在一份开创性论文中提出,自1962年Gale和Shapley在一份开创性论文中提出以来,稳定是一个重要的理论和经验研究课题。Gale和Shapley设计了值得庆祝的“推迟接受的接受”问题算法。在输入中,每个参与者将不同的参与者排在不同的类别中,因此输入的内容包括一系列的变异,代表着偏好列表。如果一些男女配对在匹配中处于阻塞状态,则双方匹配是一个不稳定的组合问题。自1962年以来,稳定匹配是一个重要经济学概念,从人对市场进行匹配的角度看,稳定匹配意味着非manbilable,而几乎不统一,因此这些是数学属性与稳定匹配算法的质量有关,因此,因此,本文是对稳定匹配算法的相配方的相对性影响进行理论研究。我们的方法超越了最坏的情况,假设一些输入偏好的列表是从分布出来的市场。我们的模型包含一种离离离不开的概率的概率的概率性准的概率,一个固定的模型,一个稳定的比重的模型,一个稳定的比重的人在稳定的模型中,一个稳定的模型中,一个稳定的比一个稳定的比一个稳定的模型,一个稳定的比一个稳定的比一个稳定的比一个稳定的人更接近一个稳定的比一个稳定的比一个稳定的比一个稳定的模型,一个稳定的比一个稳定的比一个稳定的比一个稳定的模型,一个稳定的模型,一个稳定的模型,一个稳定的比一个稳定的比一个稳定的模型,一个稳定的比一个稳定的模型,一个稳定的模型,一个稳定的比一个稳定的模型,一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的人的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个稳定的比一个比一个稳定的比一个比一个比一个比一个比一个稳定的比一个稳定的比一个稳定的比一个

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月27日
Arxiv
3+阅读 · 2020年9月30日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员