In this paper, we use a tensor model based on the Higher-Order Singular Value Decomposition (HOSVD) to discover semantic directions in Generative Adversarial Networks. This is achieved by first embedding a structured facial expression database into the latent space using the e4e encoder. Specifically, we discover directions in latent space corresponding to the six prototypical emotions: anger, disgust, fear, happiness, sadness, and surprise, as well as a direction for yaw rotation. These latent space directions are employed to change the expression or yaw rotation of real face images. We compare our found directions to similar directions found by two other methods. The results show that the visual quality of the resultant edits are on par with State-of-the-Art. It can also be concluded that the tensor-based model is well suited for emotion and yaw editing, i.e., that the emotion or yaw rotation of a novel face image can be robustly changed without a significant effect on identity or other attributes in the images.
翻译:在本文中, 我们使用基于高端单质值分解( HOSVD) 的发光模型, 以在创世对立网络中发现语义方向。 这是通过首先使用 e4e 编码器将结构化面部表达数据库嵌入潜在空间来实现的。 具体地说, 我们发现与六种原型情感相对应的潜在空间方向: 愤怒、 厌恶、 恐惧、 快乐、 悲伤和惊喜, 以及亚线旋转方向 。 这些潜在空间方向被用来改变真实图像的表达或对流旋转。 我们比较我们找到的方向与另外两种方法所发现的方向相似。 结果显示, 由此产生的编辑的视觉质量与艺术状态相当。 还可以得出结论, 基于 发光的模型非常适合情感和亚线编辑, 也就是说, 一种新面像的情感或亚线的旋转可以被强有力地改变, 而不会对图像中的身份或其他属性产生重大影响 。