Machine learning on tiny IoT devices based on microcontroller units (MCU) is appealing but challenging: the memory of microcontrollers is 2-3 orders of magnitude less even than mobile phones. We propose MCUNet, a framework that jointly designs the efficient neural architecture (TinyNAS) and the lightweight inference engine (TinyEngine), enabling ImageNet-scale inference on microcontrollers. TinyNAS adopts a two-stage neural architecture search approach that first optimizes the search space to fit the resource constraints, then specializes the network architecture in the optimized search space. TinyNAS can automatically handle diverse constraints (i.e. device, latency, energy, memory) under low search costs. TinyNAS is co-designed with TinyEngine, a memory-efficient inference library to expand the design space and fit a larger model. TinyEngine adapts the memory scheduling according to the overall network topology rather than layer-wise optimization, reducing the memory usage by 2.7x, and accelerating the inference by 1.7-3.3x compared to TF-Lite Micro and CMSIS-NN. MCUNet is the first to achieves >70% ImageNet top1 accuracy on an off-the-shelf commercial microcontroller, using 3.6x less SRAM and 6.6x less Flash compared to quantized MobileNetV2 and ResNet-18. On visual&audio wake words tasks, MCUNet achieves state-of-the-art accuracy and runs 2.4-3.4x faster than MobileNetV2 and ProxylessNAS-based solutions with 2.2-2.6x smaller peak SRAM. Our study suggests that the era of always-on tiny machine learning on IoT devices has arrived.


翻译:在微控制器单位(MCU)的基础上对小型的 IOT 设备进行小型 IOT 机床学习是很有吸引力的,但具有挑战性:微控制器的内存比移动电话要低2-3个数量级。我们提议MCUNet,这是一个联合设计高效神经结构(TinyNAS)和轻量级发酵引擎(TinyENGine)的框架,使微控制器能够进行图像网络规模的推导。TinyNAS采用两阶段神经结构搜索方法,首先优化搜索空间以适应资源限制,然后在优化搜索空间中专门设计网络结构。TinyNAS可以自动处理各种限制(即设备、延缓度、能量、内存),在搜索成本低的情况下联合设计高效神经神经结构结构(TinyENNAS)和轻量级发酵,使存储系统根据整体网络的表层和SISM-SLSAL的精度进行更小的学习,在SISA-SL上,在SIC-SAL-SAL-SAL-SU-SL上,在SAL-SAL-SAL-SAL-SAL-SAL-SAL-SU-SAL-SAL-SAL-SU-SUI-SL 上,在SU-SU-SU-SU-S-S-S-S-S-S-S-S-S-SU-S-S-S-S-S-S-SU-SU-SOLT-S-SOLT-SDS-S-S-S-S-SL 上,在SAL-S-S-S-S-SI-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SL-S-S-S-S-S-S-SOL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
8+阅读 · 2018年6月19日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员