Machine learning on tiny IoT devices based on microcontroller units (MCU) is appealing but challenging: the memory of microcontrollers is 2-3 orders of magnitude less even than mobile phones. We propose MCUNet, a framework that jointly designs the efficient neural architecture (TinyNAS) and the lightweight inference engine (TinyEngine), enabling ImageNet-scale inference on microcontrollers. TinyNAS adopts a two-stage neural architecture search approach that first optimizes the search space to fit the resource constraints, then specializes the network architecture in the optimized search space. TinyNAS can automatically handle diverse constraints (i.e. device, latency, energy, memory) under low search costs. TinyNAS is co-designed with TinyEngine, a memory-efficient inference library to expand the design space and fit a larger model. TinyEngine adapts the memory scheduling according to the overall network topology rather than layer-wise optimization, reducing the memory usage by 2.7x, and accelerating the inference by 1.7-3.3x compared to TF-Lite Micro and CMSIS-NN. MCUNet is the first to achieves >70% ImageNet top1 accuracy on an off-the-shelf commercial microcontroller, using 3.6x less SRAM and 6.6x less Flash compared to quantized MobileNetV2 and ResNet-18. On visual&audio wake words tasks, MCUNet achieves state-of-the-art accuracy and runs 2.4-3.4x faster than MobileNetV2 and ProxylessNAS-based solutions with 2.2-2.6x smaller peak SRAM. Our study suggests that the era of always-on tiny machine learning on IoT devices has arrived.
翻译:在微控制器单位(MCU)的基础上对小型的 IOT 设备进行小型 IOT 机床学习是很有吸引力的,但具有挑战性:微控制器的内存比移动电话要低2-3个数量级。我们提议MCUNet,这是一个联合设计高效神经结构(TinyNAS)和轻量级发酵引擎(TinyENGine)的框架,使微控制器能够进行图像网络规模的推导。TinyNAS采用两阶段神经结构搜索方法,首先优化搜索空间以适应资源限制,然后在优化搜索空间中专门设计网络结构。TinyNAS可以自动处理各种限制(即设备、延缓度、能量、内存),在搜索成本低的情况下联合设计高效神经神经结构结构(TinyENNAS)和轻量级发酵,使存储系统根据整体网络的表层和SISM-SLSAL的精度进行更小的学习,在SISA-SL上,在SIC-SAL-SAL-SAL-SU-SL上,在SAL-SAL-SAL-SAL-SAL-SAL-SAL-SU-SAL-SAL-SAL-SU-SUI-SL 上,在SU-SU-SU-SU-S-S-S-S-S-S-S-S-S-SU-S-S-S-S-S-S-SU-SU-SOLT-S-SOLT-SDS-S-S-S-S-SL 上,在SAL-S-S-S-S-SI-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SL-S-S-S-S-S-S-SOL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S