Internet of Things (IoT) requires a new processing paradigm that inherits the scalability of the cloud while minimizing network latency using resources closer to the network edge. Building up such flexibility within the edge-to-cloud continuum consisting of a distributed networked ecosystem of heterogeneous computing resources is challenging. Load-balancing for fog computing becomes a cornerstone for cost-effective system management and operations. This paper studies two optimization objectives and formulates a decentralized load-balancing problem for IoT service placement: (global) IoT workload balance and (local) quality of service, in terms of minimizing the cost of deadline violation, service deployment, and unhosted services. The proposed solution, EPOS Fog, introduces a decentralized multiagent system for collective learning that utilizes edge-to-cloud nodes to jointly balance the input workload across the network and minimize the costs involved in service execution. The agents locally generate possible assignments of requests to resources and then cooperatively select an assignment such that their combination maximizes edge utilization while minimizes service execution cost. Extensive experimental evaluation with realistic Google cluster workloads on various networks demonstrates the superior performance of EPOS Fog in terms of workload balance and quality of service, compared to approaches such as First Fit and exclusively Cloud-based. The findings demonstrate how distributed computational resources on the edge can be utilized more cost-effectively by harvesting collective intelligence.


翻译:互联网(IoT)需要一种新的处理模式,它继承云云的伸缩性,同时使用更接近网络边缘的资源,最大限度地减少网络的延迟时间。在由分布式网络的多种计算资源组成的分布式网络生态系统组成的边对边连续流中,建立这种灵活性是一项挑战。为雾计算而进行沉着平衡成为成本效益高的系统管理和运行的基石。本文研究两个优化目标,为IoT服务安排提出一个分散的负载平衡问题:(全球) IoT工作量平衡和(当地)服务质量,以尽量减少违反最后期限、服务部署和无人托管服务的成本。拟议的解决方案EPOS Fog为集体学习引入了分散式多试剂系统,利用边对边结节,以联合平衡整个网络的投入工作量,并最大限度地减少服务执行费用。当地代理商可能分配资源请求,然后合作选择一种组合,最大限度地利用边际工作量,同时最大限度地降低服务执行成本。在各种网络上进行符合实际的Google群工作量的大规模实验性评估,表明EPOS的先进性多试样性工作表现了EPOS的优异性计算方法,从而将最佳地利用了高额计算结果,从而将最佳地利用了高额计算方法,从而更精确地利用了高额计算。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
119+阅读 · 2020年3月30日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月5日
VIP会员
相关VIP内容
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
119+阅读 · 2020年3月30日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员