We develop a doubly-exponential decision procedure for the satisfiability problem of guarded separation logic -- a novel fragment of separation logic featuring user-supplied inductive predicates, Boolean connectives, and separating connectives, including restricted (guarded) versions of negation, magic wand, and septraction. Moreover, we show that dropping the guards for any of the above connectives leads to an undecidable fragment. We further apply our decision procedure to reason about entailments in the popular symbolic heap fragment of separation logic. In particular, we obtain a doubly-exponential decision procedure for entailments between (quantifier-free) symbolic heaps with inductive predicate definitions of bounded treewidth (SLIDbtw) - one of the most expressive decidable fragments of separation logic. Together with the recently shown 2ExpTime-hardness for entailments in said fragment, we conclude that the entailment problem for SLIDbtw is 2ExpTime-complete - thereby closing a previously open complexity gap.
翻译:我们为保密分离逻辑的可比较性问题制定了双重适用的决定程序 -- -- 一种新颖的分离逻辑的碎片,其特点是用户提供的感化前置物、布林连接器和分离连接器,包括受限制的(保护的)否定版本、魔法魔杖和分离器。此外,我们表明,为上述任何连接器丢弃警卫会导致一个不可分化的碎片。我们进一步运用我们的决定程序来解释在流行的分离逻辑的象征性堆积碎片中产生的问题。特别是,我们获得了一种(无量化的)象征性决定程序,其中含有受约束的树枝(SLIDbtw)的隐含性上游定义,是分离逻辑中最明显的可分解的碎片之一。加上最近显示的2个需要上述碎块的耗时困难,我们得出的结论是,SLIDbtw引起的问题是2Explatime-frime-toim