Probability density models based on deep networks have achieved remarkable success in modeling complex high-dimensional datasets. However, unlike kernel density estimators, modern neural models do not yield marginals or conditionals in closed form, as these quantities require the evaluation of seldom tractable integrals. In this work, we present the Marginalizable Density Model Approximator (MDMA), a novel deep network architecture which provides closed form expressions for the probabilities, marginals and conditionals of any subset of the variables. The MDMA learns deep scalar representations for each individual variable and combines them via learned hierarchical tensor decompositions into a tractable yet expressive CDF, from which marginals and conditional densities are easily obtained. We illustrate the advantage of exact marginalizability in several tasks that are out of reach of previous deep network-based density estimation models, such as estimating mutual information between arbitrary subsets of variables, inferring causality by testing for conditional independence, and inference with missing data without the need for data imputation, outperforming state-of-the-art models on these tasks. The model also allows for parallelized sampling with only a logarithmic dependence of the time complexity on the number of variables.
翻译:以深网络为基础的概率密度模型在模拟复杂高维数据集方面取得了显著的成功,然而,与内核密度估计器不同,现代神经模型并不产生边际或封闭式条件,因为这些数量需要评估很少可移动的构件。在这项工作中,我们介绍了边际可扩展密度模型匹配器(MDMA),这是一个全新的深网络结构,它为任意的变量子集提供了封闭形式的表达方式,通过测试有条件的独立性推断因果关系,并推断缺少的数据,而不需要数据对准,通过高温分解分解成可移动的但显眼的CDF,从中很容易获得边际和有条件密度。我们说明了在先前基于网络的深度密度估计模型(MDMA)所达不到的若干任务中确切的边际性优势,例如估计任意的变量子集之间的相互信息,通过测试有条件独立性推断因果关系,以及用缺失的数据而无需数据对数据进行分解,从而将每个变量合并成可移动但又显性显性CDF。我们可以看到边际和有条件的密度。我们展示了这些模型的相似性。我们还可以对这些任务进行比较。