Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond. In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks, where IoT devices contend for accessing the shared wireless channel using an adaptive p-persistent slotted Aloha protocol. To enable a capacity-optimal network, a novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity. It is shown that the network optimization objective is high dimensional and mathematically intractable, yet it admits favourable mathematical properties that enable the design of efficient data-driven algorithmic solutions which do not require a priori knowledge of the channel model or network topology. A centralized model-based algorithm and a scalable distributed model-free algorithm, are proposed to optimally tune the transmission probabilities of IoT devices and attain the maximum capacity. The convergence of the proposed algorithms to the optimal solution is further established based on convex optimization and game-theoretic analysis. Extensive simulations demonstrate the merits of the novel formulation and the efficacy of the proposed algorithms.
翻译:非垂直多重存取(NOMA)是使5G网络内外的大型机器类型通信(MMTC)得以实现的关键技术。在本文中,NOMA被用于提高高密度空间分布多细胞无线 IoT 网络随机访问效率,在这种网络中,IoT 设备为使用适应性P-Pepistent stocked Aloha 协议访问共享无线频道而争斗。为了能够建立能力优化的网络,建议了随机频道访问管理的新配方,对每个IoT设备的传输概率进行调整,以最大限度地提高用户预期能力的几何平均值。这表明,网络优化目标具有高度的和数学难度,但它承认了有利的数学特性,使得能够设计有效的数据驱动算法解决方案,而不需要事先了解频道模型或网络表层。建议了中央模型算法和可缩放式无型算法,以优化IoT设备的传输概率,并实现最大程度的用户预期能力的几何平均数平均值。拟议的最精确性演算法的趋同性,展示了拟议最优化的模型和最优性演算法的精度分析。拟议的最优化的精度分析法和最优性分析方法的精准。提议最接近性分析是模拟的精准的精准。