Measuring the impact of an environmental point source exposure on the risk of disease, like cancer or childhood asthma, is well-developed. Modeling how an environmental health hazard that is extensive in space, like a wastewater canal, is not. We propose a novel Bayesian generative semiparametric model for characterizing the cumulative spatial exposure to an environmental health hazard that is not well-represented by a single point in space. The model couples a dose-response model with a log-Gaussian Cox process integrated against a distance kernel with an unknown length-scale. We show that this model is a well-defined Bayesian inverse model, namely that the posterior exists under a Gaussian process prior for the log-intensity of exposure, and that a simple integral approximation adequately controls the computational error. We quantify the finite-sample properties and the computational tractability of the discretization scheme in a simulation study. Finally, we apply the model to survey data on household risk of childhood diarrheal illness from exposure to a system of wastewater canals in Mezquital Valley, Mexico.
翻译:暂无翻译