Deep learning has made a remarkable impact in the field of natural image processing over the past decade. Consequently, there is a great deal of interest in replicating this success across unsolved tasks in related domains, such as medical image analysis. Core to medical image analysis is the task of semantic segmentation which enables various clinical workflows. Due to the challenges inherent in manual segmentation, many decades of research have been devoted to discovering extensible, automated, expert-level segmentation techniques. Given the groundbreaking performance demonstrated by recent neural network-based techniques, deep learning seems poised to achieve what classic methods have historically been unable. This paper will briefly overview some of the state-of-the-art (SoTA) neural network-based segmentation algorithms with a particular emphasis on the most recent architectures, comparing and contrasting the contributions and characteristics of each network topology. Using ultrasonography as a motivating example, it will also demonstrate important clinical implications of effective deep learning-based solutions, articulate challenges unique to the modality, and discuss novel approaches developed in response to those challenges, concluding with the proposal of future directions in the field. Given the generally observed ephemerality of the best deep learning approaches (i.e. the extremely quick succession of the SoTA), the main contributions of the paper are its contextualization of modern deep learning architectures with historical background and the elucidation of the current trajectory of volumetric medical image segmentation research.


翻译:过去十年来,深层学习在自然图像处理领域产生了显著影响,因此,在医学图像分析等相关领域的未解决任务中,人们非常有兴趣复制这一成功,在医学图像分析等未解决的任务中推广这一成功。医学图像分析的核心是使各种临床工作流程得以实现的语义分解任务。由于人工分解所固有的挑战,数十年的研究致力于发现可扩展的自动化专家分解技术。鉴于最近以神经网络为基础的技术所展示的突破性表现,深层次的学习似乎有望实现传统方法历来无法达到的目标。本文件将简要概述一些基于神经网络的状态分解算法,特别强调最新的结构,比较和对比每个网络表层学的贡献和特征。由于以超声波学为例,它还将展示有效的深层深层研究解决方案的重要临床影响,阐明当前模式的独特挑战,并讨论为应对这些挑战而开发的新方法,最后以未来方向的建议结束。本文件将简要地概述一些基于神经网络的状态分解分析法现状,并特别侧重于最近结构结构的深度学习。

1
下载
关闭预览

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
17+阅读 · 2021年1月21日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员