We consider algorithms for finding and counting small, fixed graphs in sparse host graphs. In the non-sparse setting, the parameters treedepth and treewidth play a crucial role in fast, constant-space and polynomial-space algorithms respectively. We discover two new parameters that we call matched treedepth and matched treewidth. We show that finding and counting patterns with low matched treedepth and low matched treewidth can be done asymptotically faster than the existing algorithms when the host graphs are sparse for many patterns. As an application to finding and counting fixed-size patterns, we discover $\otilde(m^3)$-time \footnote{$\otilde$ hides factors that are logarithmic in the input size.}, constant-space algorithms for cycles of length at most $11$ and $\otilde(m^2)$-time, polynomial-space algorithms for paths of length at most $10$.
翻译:我们考虑在稀有主机图中查找和计算小的固定图形的算法。 在非粗糙的设置中, 参数树深度和树边在快速、 恒定空间和多元空间算法中分别发挥着关键作用。 我们发现了两个我们称之为匹配树深度和匹配树边的新的参数。 我们显示, 当主机图在很多模式中稀少时, 查找和计算低匹配树深度和低匹配树边的模式可以比现有的算法更快。 作为查找和计算固定规模模式的应用程序, 我们发现 $\ ottilde(m%3) $-time\ footo{$\\ otelde$ 隐藏了输入大小的对数因素 。} 用于长度周期的恒定空间算法最多为 $11 和 $\ ottilde(m ⁇ 2) $- time, 长度路径的多元空间算法最多为$ 100美元 。