In this work, we present two new families of quadratic APN functions. The first one (F1) is constructed via biprojective polynomials. This family includes one of the two APN families introduced by G\"olo\v{g}lu in 2022. Then, following a similar approach as in Li \emph{et al.} (2022), we give another family (F2) obtained by adding certain terms to F1. As a byproduct, this second family includes one of the two families introduced by Li \emph{et al.} (2022). Moreover, we show that for $n=12$, from our constructions, we can obtain APN functions that are CCZ-inequivalent to any other known APN function over $\mathbb{F}_{2^{12}}$.
翻译:在这项工作中,我们提出了两个具有二次APN功能的新家庭。第一个家庭(F1)是通过双投多子宫建造的。这个家庭包括G\"olo\v{g}lu在2022年引进的两个APN家庭之一。然后,按照与Li\emph{et al.}(2022年)类似的方法,我们给另一个家庭(F2),在F1中添加了某些条件。作为副产品,第二个家庭包括Li\emph{et al.}(2022年)引进的两个家庭之一。此外,我们从我们的建筑中可以看出,以1美元=1美元计算,我们可以得到相当于其他已知APN在$\mathbb{F ⁇ 2 ⁇ 12$以上的功能的APN功能。