This paper presents a Hoare-style calculus for formal reasoning about reconfiguration programs of distributed systems. Such programs delete or create interactions or components while the system components change state according to their local behaviour. Our proof calculus uses a configuration logic that supports local reasoning and that relies on inductive predicates to describe distributed systems with an unbounded number of components. The validity of reconfiguration programs relies on havoc invariants, assertions about the ongoing interactions in the system. We present a proof system for such invariants in an assume/rely-guarantee style. We illustrate the feasibility of our approach by proving the correctness of self-adjustable tree architectures and provide tight complexity bounds for entailment checking in the configuration logic.
翻译:本文展示了用于正式推理分布式系统重组程序的Hoare式计算法。 这种程序删除或创建互动或组件, 而系统组成部分则根据当地行为改变状态。 我们的证据计算法使用了一种配置逻辑,支持当地的推理,并依靠感应性假设来描述分布式系统,其组成部分数量没有限制。 重组程序的有效性依赖于破坏性变异性, 声称系统中的持续互动。 我们以假设/ 重新保证的方式为这些变异性提供了一种验证系统。 我们通过证明可自我调整的树型结构的正确性来说明我们的方法的可行性,并为配置逻辑中要求检查提供了严格复杂的界限。