The choice of optimal event variables is crucial for achieving the maximal sensitivity of experimental analyses. Over time, physicists have derived suitable kinematic variables for many typical event topologies in collider physics. Here we introduce a deep learning technique to design good event variables, which are sensitive over a wide range of values for the unknown model parameters. We demonstrate that the neural networks trained with our technique on some simple event topologies are able to reproduce standard event variables like invariant mass, transverse mass, and stransverse mass. The method is automatable, completely general, and can be used to derive sensitive, previously unknown, event variables for other, more complex event topologies.
翻译:最佳事件变量的选择对于实现实验分析的最大敏感度至关重要。 随着时间的推移, 物理学家已经为相撞物理学中许多典型事件地形得出了合适的运动变量。 在这里, 我们引入了一种深层次的学习技术来设计良好的事件变量, 这些变量对于未知模型参数的多种数值十分敏感。 我们证明, 接受过我们技术培训的神经网络能够复制一些简单事件地形变量, 如无变化质量、 反向质量和反向质量。 这种方法是自动的, 完全一般的, 并且可以用来为其他更复杂的事件类型生成敏感、 先前未知的事件变量 。