The mushroomed Deepfake synthetic materials circulated on the internet have raised serious social impact to politicians, celebrities, and every human being on earth. In this paper, we provide a thorough review of the existing models following the development history of the Deepfake detection studies and define the research challenges of Deepfake detection in three aspects, namely, transferability, interpretability, and reliability. While the transferability and interpretability challenges have both been frequently discussed and attempted to solve with quantitative evaluations, the reliability issue has been barely considered, leading to the lack of reliable evidence in real-life usages and even for prosecutions on Deepfake related cases in court. We therefore conduct a model reliability study scheme using statistical random sampling knowledge and the publicly available benchmark datasets to qualitatively validate the detection performance of the existing models on arbitrary Deepfake candidate suspects. A barely remarked systematic data pre-processing procedure is demonstrated along with the fair training and testing experiments on the existing detection models. Case studies are further executed to justify the real-life Deepfake cases including different groups of victims with the help of reliably qualified detection models. The model reliability study provides a workflow for the detection models to act as or assist evidence for Deepfake forensic investigation in court once approved by authentication experts or institutions.


翻译:在互联网上散发的蘑菇Deepfake合成材料给政界人士、名人和地球上的每一个人带来了严重的社会影响;在本文件中,我们根据Deepfake探测研究的发展史对现有模型的现有模型进行彻底审查,并从三个方面,即可转移性、可解释性和可靠性,界定Deepfake探测的研究挑战;虽然经常讨论并试图通过定量评估来解决可转移性和可解释性挑战,但可靠性问题却很少得到考虑,导致实际使用中缺乏可靠的证据,甚至在法庭上对Deepfake相关案件进行起诉;因此,我们利用统计随机抽样知识和公开可得的基准数据集,对现有的Deepfake候选嫌疑人模型的探测性能进行定性验证,同时对现有探测模型进行公平的培训和测试试验;进一步开展案例研究,为真实生活深海案件(包括不同的受害人群体)提供正当理由,帮助进行可靠的检测模型;因此,模型可靠性研究为探测模型提供了一个工作流程,一旦获得核准,或由法庭认证,则作为证据,或协助进行深藏法证机构采取行动。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
20+阅读 · 2020年6月8日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员