This paper proposes a new glass segmentation method utilizing paired RGB and thermal images. Due to the large difference between the transmission property of visible light and that of the thermal energy through the glass where most glass is transparent to the visible light but opaque to thermal energy, glass regions of a scene are made more distinguishable with a pair of RGB and thermal images than solely with an RGB image. To exploit such a unique property, we propose a neural network architecture that effectively combines an RGB-thermal image pair with a new multi-modal fusion module based on attention, and integrate CNN and transformer to extract local features and long-range dependencies, respectively. As well, we have collected a new dataset containing 5551 RGB-thermal image pairs with ground-truth segmentation annotations. The qualitative and quantitative evaluations demonstrate the effectiveness of the proposed approach on fusing RGB and thermal data for glass segmentation. Our code and data are available at https://github.com/Dong-Huo/RGB-T-Glass-Segmentation.
翻译:由于可见光和热能的传输特性与玻璃的热能的特性差异很大,在玻璃中,大多数玻璃对可见光透明,但对热能不透明,因此,场景的玻璃区域比对RGB图像和热图像更能辨别。为了利用这种独特的特性,我们提议一个神经网络结构,有效地将RGB热像对与基于注意的新的多式聚变模块结合起来,并结合CNN和变压器,以提取地方特征和远距离依赖性。此外,我们收集了一套新数据集,内有5551 RGB热像对,并附有地面分层说明。定性和定量评价表明拟议采用的使用RGB和热数据进行玻璃分层的方法的有效性。我们的代码和数据可在https://github.com/Dong-Huoo/RGB-T-Glass-Segmentation查阅。