In a recent article the author presented a method to measure the snapping capability -- shortly called snappability -- of bar-joint frameworks based on the total elastic strain energy by computing the deformation of all bars using Hooke's law and the definition of Cauchy/Engineering strain. Within the paper at hand, we extend this approach to isostatic frameworks composed of bars and triangular plates by using the physical concept of Green-Lagrange strain. An intrinsic pseudometric based on the resulting total elastic strain energy density cannot only be used for evaluating the snappability but also for measuring the distance to the closest singular configuration. The presented methods are demonstrated on the basis of the 3-legged planar parallel manipulator.


翻译:在最近的一篇文章中,作者提出了一个方法,用虎克法和Cauchy/Engineering菌株的定义计算所有铁条的变形,以此计算所有弹性菌株能量的总能量,以此衡量条状联合框架的断裂能力 -- -- 近期称为可燃性 -- -- 。在手头的论文中,我们将这一方法扩大到由条状和三角板块组成的异骨框,采用绿色长颈菌菌株的物理概念。基于由此产生的弹性菌株总能量密度的内在假体不能只用来评价弹性菌株的可燃性,也只能用来测量与最接近的单形结构的距离。我们提出的方法以三脚平板平行操纵器为基础加以证明。

0
下载
关闭预览

相关内容

最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
27+阅读 · 2020年12月2日
专知会员服务
53+阅读 · 2020年9月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
7+阅读 · 2018年11月5日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月3日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关主题
相关VIP内容
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
27+阅读 · 2020年12月2日
专知会员服务
53+阅读 · 2020年9月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
7+阅读 · 2018年11月5日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员