We investigate a variational method for ill-posed problems, named $\texttt{graphLa+}\Psi$, which embeds a graph Laplacian operator in the regularization term. The novelty of this method lies in constructing the graph Laplacian based on a preliminary approximation of the solution, which is obtained using any existing reconstruction method $\Psi$ from the literature. As a result, the regularization term is both dependent on and adaptive to the observed data and noise. We demonstrate that $\texttt{graphLa+}\Psi$ is a regularization method and rigorously establish both its convergence and stability properties. We present selected numerical experiments in 2D computerized tomography, wherein we integrate the $\texttt{graphLa+}\Psi$ method with various reconstruction techniques $\Psi$, including Filter Back Projection ($\texttt{graphLa+FBP}$), standard Tikhonov ($\texttt{graphLa+Tik}$), Total Variation ($\texttt{graphLa+TV}$), and a trained deep neural network ($\texttt{graphLa+Net}$). The $\texttt{graphLa+}\Psi$ approach significantly enhances the quality of the approximated solutions for each method $\Psi$. Notably, $\texttt{graphLa+Net}$ is outperforming, offering a robust and stable application of deep neural networks in solving inverse problems.
翻译:暂无翻译