Dense geometric matching is a challenging computer vision task, requiring accurate correspondences under extreme variations in viewpoint and illumination, even for low-texture regions. In this task, finding accurate global correspondences is essential for later refinement stages. The current learning based paradigm is to perform global fixed-size correlation, followed by flattening and convolution to predict correspondences. In this work, we consider the problem from a different perspective and propose to formulate global correspondence estimation as a continuous probabilistic regression task using deep kernels, yielding a novel approach to learning dense correspondences. Our full approach, \textbf{D}eep \textbf{K}ernelized \textbf{M}atching, achieves significant improvements compared to the state-of-the-art on the competitive HPatches and YFCC100m benchmarks, and we dissect the gains of our contributions in a thorough ablation study.


翻译:频繁的几何匹配是一项具有挑战性的计算机愿景任务,要求即使在低脂地区,在观点和光度极端差异下进行准确的通信。 在这项任务中,找到准确的全球通信对于后期的完善阶段至关重要。 目前基于学习的范例是进行全球固定规模的关联,随后是平整和变迁以预测通信。 在这项工作中,我们从不同的角度来考虑这一问题,并提议将全球通信估算作为一种连续的概率回归任务,使用深厚的内核,为学习密集的通信提供新的方法。 我们的全面方法, \ textb{DEep\ textbf{K} lennelized\ textbf{Matching, 与竞争性的HPatches和YFCC100m基准的状态相比, 取得了显著的改进, 我们将在全面通缩的通缩的通缩研究中解我们贡献的收益。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
24+阅读 · 2021年3月4日
Arxiv
13+阅读 · 2018年4月6日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关论文
Arxiv
12+阅读 · 2021年6月29日
Arxiv
24+阅读 · 2021年3月4日
Arxiv
13+阅读 · 2018年4月6日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
10+阅读 · 2017年12月29日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员