Dense geometric matching is a challenging computer vision task, requiring accurate correspondences under extreme variations in viewpoint and illumination, even for low-texture regions. In this task, finding accurate global correspondences is essential for later refinement stages. The current learning based paradigm is to perform global fixed-size correlation, followed by flattening and convolution to predict correspondences. In this work, we consider the problem from a different perspective and propose to formulate global correspondence estimation as a continuous probabilistic regression task using deep kernels, yielding a novel approach to learning dense correspondences. Our full approach, \textbf{D}eep \textbf{K}ernelized \textbf{M}atching, achieves significant improvements compared to the state-of-the-art on the competitive HPatches and YFCC100m benchmarks, and we dissect the gains of our contributions in a thorough ablation study.
翻译:频繁的几何匹配是一项具有挑战性的计算机愿景任务,要求即使在低脂地区,在观点和光度极端差异下进行准确的通信。 在这项任务中,找到准确的全球通信对于后期的完善阶段至关重要。 目前基于学习的范例是进行全球固定规模的关联,随后是平整和变迁以预测通信。 在这项工作中,我们从不同的角度来考虑这一问题,并提议将全球通信估算作为一种连续的概率回归任务,使用深厚的内核,为学习密集的通信提供新的方法。 我们的全面方法, \ textb{DEep\ textbf{K} lennelized\ textbf{Matching, 与竞争性的HPatches和YFCC100m基准的状态相比, 取得了显著的改进, 我们将在全面通缩的通缩的通缩研究中解我们贡献的收益。