Machine learning (ML) and artificial intelligence (AI) tools increasingly permeate every possible social, political, and economic sphere; sorting, taxonomizing and predicting complex human behaviour and social phenomena. However, from fallacious and naive groundings regarding complex adaptive systems to datasets underlying models, these systems are beset by problems, challenges, and limitations. They remain opaque and unreliable, and fail to consider societal and structural oppressive systems, disproportionately negatively impacting those at the margins of society while benefiting the most powerful. The various challenges, problems and pitfalls of these systems are a hot topic of research in various areas, such as critical data/algorithm studies, science and technology studies (STS), embodied and enactive cognitive science, complexity science, Afro-feminism, and the broadly construed emerging field of Fairness, Accountability, and Transparency (FAccT). Yet, these fields of enquiry often proceed in silos. This thesis weaves together seemingly disparate fields of enquiry to examine core scientific and ethical challenges, pitfalls, and problems of AI. In this thesis I, a) review the historical and cultural ecology from which AI research emerges, b) examine the shaky scientific grounds of machine prediction of complex behaviour illustrating how predicting complex behaviour with precision is impossible in principle, c) audit large scale datasets behind current AI demonstrating how they embed societal historical and structural injustices, d) study the seemingly neutral values of ML research and put forward 67 prominent values underlying ML research, e) examine some of the insidious and worrying applications of computer vision research, and f) put forward a framework for approaching challenges, failures and problems surrounding ML systems as well as alternative ways forward.
翻译:机器学习(ML)和人工智能(AI)工具日益渗透到各种可能的社会、政治和经济领域;对复杂的人类行为和社会现象进行分类、分类和预测;然而,从复杂的适应系统方面的谬误和天真基础,到基本模型的数据集,这些系统都被各种问题、挑战和限制所困扰;它们仍然不透明、不可靠,没有考虑到社会和结构性压迫系统,对处于社会边缘地位但又能为最强大者造福的人产生不成比例的负面影响;这些系统的各种挑战、问题和缺陷,是各个领域研究的一个热门话题,如关键数据/数值研究、科学和技术研究(STS),包含并颁布认知科学、复杂科学、非洲女性主义,以及广泛解释公平、问责和透明等新兴领域。 然而,这些调查领域往往在空洞中进行。 这些研究似乎相互不相同的领域研究,以研究核心科学和道德框架、令人不安的缺陷和AI问题为替代的替代。 在本次研究中,一个清晰的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、历史的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻的、深刻