It is known that unsupervised nonlinear dimensionality reduction and clustering is sensitive to the selection of hyperparameters, particularly for deep learning based methods, which hinder its practical use. How to select a proper network structure that may be dramatically different in different applications is a hard issue for deep models, given little prior knowledge of data. In this paper, we explore ensemble learning and selection techniques for automatically determining the optimal network structure of a deep model, named multilayer bootstrap networks (MBN). Specifically, we first propose an MBN ensemble (MBN-E) algorithm which concatenates the sparse outputs of a set of MBN base models with different network structures into a new representation. Because training an ensemble of MBN is expensive, we propose a fast version of MBN-E (fMBN-E), which replaces the step of random data resampling in MBN-E by the random resampling of similarity scores. Theoretically, fMBN-E is even faster than a single standard MBN. Then, we take the new representation produced by MBN-E as a reference for selecting the optimal MBN base models. Two kinds of ensemble selection criteria, named optimization-like selection criteria and distribution divergence criteria, are applied. Importantly, MBN-E and its ensemble selection techniques maintain the simple formulation of MBN that is based on one-nearest-neighbor learning, and reach the state-of-the-art performance without manual hyperparameter tuning. fMBN-E is empirically even hundreds of times faster than MBN-E without suffering performance degradation. The source code is available at http://www.xiaolei-zhang.net/mbn-e.htm.
翻译:众所周知, 未经监督的非线性维度的减少和集群对于选择超参数非常敏感, 特别是对于深学习方法而言, 这阻碍了它的实际使用。 如何选择在不同应用中可能截然不同的适当网络结构对于深层模型来说是一个棘手的问题, 因为之前对数据知之甚少。 在本文中, 我们探索混合学习和选择技术, 以自动确定深模型的最佳网络结构, 名为多层靴套网( MBN) 。 具体地说, 我们首先提议 MBN 混合计算( MBN- E) 算法, 将一组MBN基础模型的零散产出与不同的网络结构混为一体。 由于培训一个在不同的应用 MBNB 的集合是昂贵的, 我们提议一个快速版本的 MBN- E (fMN- E), 取代MBN- E 随机的重现版数据, 随机抽取类似分数。 理论上, FMMBNN- E 调比一个标准更快。 然后, 我们采用由MBN- E 以最低基础的 mal- IM 选择 标准,, 以不使用 最优的 mBE 标准 标准,, 以 最优的 mBNBNBNBE 标准 。