Astronomical source deblending is the process of separating the contribution of individual stars or galaxies (sources) to an image comprised of multiple, possibly overlapping sources. Astronomical sources display a wide range of sizes and brightnesses and may show substantial overlap in images. Astronomical imaging data can further challenge off-the-shelf computer vision algorithms owing to its high dynamic range, low signal-to-noise ratio, and unconventional image format. These challenges make source deblending an open area of astronomical research, and in this work, we introduce a new approach called Partial-Attribution Instance Segmentation that enables source detection and deblending in a manner tractable for deep learning models. We provide a novel neural network implementation as a demonstration of the method.
翻译:天文来源稀释法是将单个恒星或星系(源)对由多个可能重叠的源组成的图像的贡献分开的过程。天文来源显示各种大小和亮度,并可能显示图像的大量重叠。天文成像数据可以进一步挑战现成的计算机视觉算法,因为其高动态范围、低信号对噪音比率和非常规图像格式。这些挑战使源解密成为天文研究的开放领域。在这项工作中,我们引入了一种叫做部分归并事件分法的新方法,以便能够对源进行探测,并以一种可引导深层学习模型的方式进行分解。我们提供了一种新的神经网络实施,作为方法的演示。