Structural Bias (SB) is an important type of algorithmic deficiency within iterative optimisation heuristics. However, methods for detecting structural bias have not yet fully matured, and recent studies have uncovered many interesting questions. One of these is the question of how structural bias can be related to anisotropy. Intuitively, an algorithm that is not isotropic would be considered structurally biased. However, there have been cases where algorithms appear to only show SB in some dimensions. As such, we investigate whether these algorithms actually exhibit anisotropy, and how this impacts the detection of SB. We find that anisotropy is very rare, and even in cases where it is present, there are clear tests for SB which do not rely on any assumptions of isotropy, so we can safely expand the suite of SB tests to encompass these kinds of deficiencies not found by the original tests. We propose several additional testing procedures for SB detection and aim to motivate further research into the creation of a robust portfolio of tests. This is crucial since no single test will be able to work effectively with all types of SB we identify.


翻译:结构比亚斯(SB)是迭代优化理论中一个重要的算法缺陷类型。然而,发现结构偏差的方法尚未完全成熟,最近的研究发现了许多有趣的问题。其中之一是结构偏差如何与厌食症相关。直观地说,一种非非无色的算法将被视为结构偏差。然而,曾经出现过算法似乎仅在某些方面显示SB的情况。因此,我们调查这些算法是否确实表现出厌食症,以及这如何影响SB的检测。我们发现,对于SB来说,厌食症非常罕见,即使存在这种情况,也存在明确的SB测试,不依赖任何偏食症的假设,因此我们可以安全地扩大SB测试的套件,以涵盖最初测试所没有发现的这些缺陷。我们建议了一些额外的SB检测测试程序,目的是激励对建立稳健的测试组合进行进一步的研究。这是至关重要的,因为没有任何单一的测试能够有效地与所有类型的SB进行工作。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员