Inverse problems defined naturally on the sphere are becoming increasingly of interest. In this article we provide a general framework for evaluation of inverse problems on the sphere, with a strong emphasis on flexibility and scalability. We consider flexibility with respect to the prior selection (regularization), the problem definition - specifically the problem formulation (constrained/unconstrained) and problem setting (analysis/synthesis) - and optimization adopted to solve the problem. We discuss and quantify the trade-offs between problem formulation and setting. Crucially, we consider the Bayesian interpretation of the unconstrained problem which, combined with recent developments in probability density theory, permits rapid, statistically principled uncertainty quantification (UQ) in the spherical setting. Linearity is exploited to significantly increase the computational efficiency of such UQ techniques, which in some cases are shown to permit analytic solutions. We showcase this reconstruction framework and UQ techniques on a variety of spherical inverse problems. The code discussed throughout is provided under a GNU general public license, in both C++ and Python.


翻译:自然而然地对这个领域界定的反面问题正日益引起人们的兴趣。在本条中,我们为评价这个领域的反面问题提供了一个总体框架,着重强调灵活性和可伸缩性。我们考虑在事先选择(正规化)、问题定义 -- -- 特别是问题拟订(受限制/不受限制)和问题设置(分析/综合) -- -- 和为解决问题而采用的最佳化方面的灵活性。我们讨论和量化问题拟订和设置之间的取舍。关键的是,我们考虑了巴耶斯人对这个不受限制的问题的解释,这些问题加上最近在概率密度理论方面的发展,允许在球体环境中快速、统计性原则的不确定性量化(UQ),利用线性来大大提高这种UQ技术的计算效率,在某些情况下,这证明是允许分析性解决办法。我们用这种重建框架和UQ技术来说明各种反面问题。我们通篇讨论的代码是在C++和Python的GNU一般公共许可证下提供的。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员