Inverse problems defined naturally on the sphere are becoming increasingly of interest. In this article we provide a general framework for evaluation of inverse problems on the sphere, with a strong emphasis on flexibility and scalability. We consider flexibility with respect to the prior selection (regularization), the problem definition - specifically the problem formulation (constrained/unconstrained) and problem setting (analysis/synthesis) - and optimization adopted to solve the problem. We discuss and quantify the trade-offs between problem formulation and setting. Crucially, we consider the Bayesian interpretation of the unconstrained problem which, combined with recent developments in probability density theory, permits rapid, statistically principled uncertainty quantification (UQ) in the spherical setting. Linearity is exploited to significantly increase the computational efficiency of such UQ techniques, which in some cases are shown to permit analytic solutions. We showcase this reconstruction framework and UQ techniques on a variety of spherical inverse problems. The code discussed throughout is provided under a GNU general public license, in both C++ and Python.
翻译:自然而然地对这个领域界定的反面问题正日益引起人们的兴趣。在本条中,我们为评价这个领域的反面问题提供了一个总体框架,着重强调灵活性和可伸缩性。我们考虑在事先选择(正规化)、问题定义 -- -- 特别是问题拟订(受限制/不受限制)和问题设置(分析/综合) -- -- 和为解决问题而采用的最佳化方面的灵活性。我们讨论和量化问题拟订和设置之间的取舍。关键的是,我们考虑了巴耶斯人对这个不受限制的问题的解释,这些问题加上最近在概率密度理论方面的发展,允许在球体环境中快速、统计性原则的不确定性量化(UQ),利用线性来大大提高这种UQ技术的计算效率,在某些情况下,这证明是允许分析性解决办法。我们用这种重建框架和UQ技术来说明各种反面问题。我们通篇讨论的代码是在C++和Python的GNU一般公共许可证下提供的。