Sampling from binary quadratic distributions (BQDs) is a fundamental but challenging problem in discrete optimization and probabilistic inference. Previous work established theoretical guarantees for stochastic localization (SL) in continuous domains, where MCMC methods efficiently estimate the required posterior expectations during SL iterations. However, achieving similar convergence guarantees for discrete MCMC samplers in posterior estimation presents unique theoretical challenges. In this work, we present the first application of SL to general BQDs, proving that after a certain number of iterations, the external field of posterior distributions constructed by SL tends to infinity almost everywhere, hence satisfy Poincar\'e inequalities with probability near to 1, leading to polynomial-time mixing. This theoretical breakthrough enables efficient sampling from general BQDs, even those that may not originally possess fast mixing properties. Furthermore, our analysis, covering enormous discrete MCMC samplers based on Glauber dynamics and Metropolis-Hastings algorithms, demonstrates the broad applicability of our theoretical framework. Experiments on instances with quadratic unconstrained binary objectives, including maximum independent set, maximum cut, and maximum clique problems, demonstrate consistent improvements in sampling efficiency across different discrete MCMC samplers.
翻译:暂无翻译