We consider a cooperative X-channel with $\sf K$ transmitters (TXs) and $\sf K$ receivers (Rxs) where Txs and Rxs are gathered into groups of size $\sf r$ respectively. Txs belonging to the same group cooperate to jointly transmit a message to each of the $\sf K- \sf r$ Rxs in all other groups, and each Rx individually decodes all its intended messages. By introducing a new interference alignment (IA) scheme, we prove that when $\sf K/\sf r$ is an integer the sum Degrees of Freedom (SDoF) of this channel is lower bounded by $2\sf r$ if $\sf K/\sf r \in \{2,3\}$ and by $\frac{\sf K(\sf K-\sf r)-\sf r}{2\sf K-3\sf r}$ if $\sf K/\sf r \geq 4$. We also prove that the SDoF is upper bounded by $\frac{\sf K(\sf K-\sf r)}{2\sf K-3\sf r}$. The proposed IA scheme finds application in a wireless distributed MapReduce framework, where it improves the normalized data delivery time (NDT) compared to the state of the art.
翻译:我们考虑一个合作X通道, 由$\ sf K$ 发射机( TXs) 和$\ sf K$ 接收器( Rxs) 组成 合作 X 通道, 将 Tx 和 Rx 合并成大小的组 $\ sf r美元。 属于同一组的 Txs 合作向所有其他组的 $sf K- sf r$ Rx 联合发送信息, 并且每个 Rx 单独解码所有想要的信息。 通过引入一个新的干涉校正( IA) 方案, 我们证明当$\ sf K/ sf / sf rg r$ 是一个整数时, 这个频道的自由度( SDoF) 被 2\ sf r$ f 美元 。 如果$sf K/ sf r2, rx 合作向每个组的 发送信息, 并且由$f k- sf f) - s s f\\ s f 计划( 如果$\ f Rge 4$\ $, 我们也可以\\\\\ laf) laf laf laf 框架 将S 的交付系统比S 数据绑定。