We design, implement, and evaluate DeepEverest, a system for the efficient execution of interpretation by example queries over the activation values of a deep neural network. DeepEverest consists of an efficient indexing technique and a query execution algorithm with various optimizations. Experiments with our prototype implementation show that DeepEverest, using less than 20% of the storage of full materialization, significantly accelerates individual queries by up to 63x and consistently outperforms other methods on multi-query workloads that simulate DNN interpretation processes.
翻译:我们设计、实施和评估深 Everest 系统,通过对深神经网络的激活值进行示例查询,高效率地执行解释。深 Everest 系统包括高效的索引技术以及使用各种优化的查询执行算法。 我们的原型实施实验显示,DeepEverest 使用不到20%的完全实现存储率,大大加快了个人查询速度,高达63x,并且始终优于模拟DNN 解释过程的多要求工作量的其他方法。