Internet of Things (IoT) devices and applications can have significant vulnerabilities, which may be exploited by adversaries to cause considerable harm. An important approach for mitigating this threat is remote attestation, which enables the defender to remotely verify the integrity of devices and their software. There are a number of approaches for remote attestation, and each has its unique advantages and disadvantages in terms of detection accuracy and computational cost. Further, an attestation method may be applied in multiple ways, such as various levels of software coverage. Therefore, to minimize both security risks and computational overhead, defenders need to decide strategically which attestation methods to apply and how to apply them, depending on the characteristic of the devices and the potential losses. To answer these questions, we first develop a testbed for remote attestation of IoT devices, which enables us to measure the detection accuracy and performance overhead of various attestation methods. Our testbed integrates two example IoT applications, memory-checksum based attestation, and a variety of software vulnerabilities that allow adversaries to inject arbitrary code into running applications. Second, we model the problem of finding an optimal strategy for applying remote attestation as a Stackelberg security game between a defender and an adversary. We characterize the defender's optimal attestation strategy in a variety of special cases. Finally, building on experimental results from our testbed, we evaluate our model and show that optimal strategic attestation can lead to significantly lower losses than naive baseline strategies.


翻译:互联网(IoT)装置和应用程序的弱点可能很大,这些弱点可能被对手用来造成重大伤害。减轻这种威胁的一个重要办法是远程证明,使维护者能够远程核实装置及其软件的完整性。有一些远程证明方法,每个方法在检测准确性和计算成本方面都有其独特的优缺点。此外,一种验证方法可以以多种方式应用,例如软件覆盖面的不同程度。因此,为了尽量减少安全风险和计算间接费用,捍卫者需要从战略上决定适用哪些证明方法以及如何应用这些方法,取决于装置的特点和潜在损失。为了回答这些问题,我们首先开发一个测试台,用于远程核实装置及其软件的完整性。在检测准确性和计算成本方面,每个方法都有其独特的优点和缺点。我们的测试台结合了两个实例,例如IoT应用程序、记忆校验和各种软件弱点,使对手能够输入任意代码来应用应用程序。第二,根据装置的特性和潜在损失,我们需要从远程证明方法上找到一个最佳战略,将远程证明作为Stackel游戏装置的基线,我们测试了我们最理想的防御者最后的试验案例。我们用一个特别的测试,我们用来证明我们最优的试验防御者可以展示我们最优的试验的试验防御者和最接近的试验的试验的试验的试验的试验的试验的试验案例。

0
下载
关闭预览

相关内容

边缘机器学习,21页ppt
专知会员服务
83+阅读 · 2021年6月21日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
MIT公开课-Vivienne Sze教授《深度学习硬件加速器》,86页ppt
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月4日
VIP会员
相关VIP内容
边缘机器学习,21页ppt
专知会员服务
83+阅读 · 2021年6月21日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
MIT公开课-Vivienne Sze教授《深度学习硬件加速器》,86页ppt
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员