In this paper we propose augmented interval Markov chains (AIMCs): a generalisation of the familiar interval Markov chains (IMCs) where uncertain transition probabilities are in addition allowed to depend on one another. This new model preserves the flexibility afforded by IMCs for describing stochastic systems where the parameters are unclear, for example due to measurement error, but also allows us to specify transitions with probabilities known to be identical, thereby lending further expressivity. The focus of this paper is reachability in AIMCs. We study the qualitative, exact quantitative and approximate reachability problem, as well as natural subproblems thereof, and establish several upper and lower bounds for their complexity. We prove the exact reachability problem is at least as hard as the famous square-root sum problem, but, encouragingly, the approximate version lies in $\mathbf{NP}$ if the underlying graph is known, whilst the restriction of the exact problem to a constant number of uncertain edges is in $\mathbf{P}$. Finally, we show that uncertainty in the graph structure affects complexity by proving $\mathbf{NP}$-completeness for the qualitative subproblem, in contrast with an easily-obtained upper bound of $\mathbf{P}$ for the same subproblem with known graph structure.
翻译:在本文中,我们建议扩大Markov链(AIMCs) : 概括熟悉的马可夫链(IMCs) 间隙(IMCs), 其中不确定的过渡概率可以相互依赖。 这个新模式保留了IMCs在描述参数不明确的随机系统方面提供的灵活性, 例如由于测量错误, 参数不明确, 但也允许我们指定已知概率相同的过渡, 从而进一步表达性。 本文的重点是 AIMCs 的可达性 。 我们研究了质量、 精确的数量和近似可达性问题, 以及其中的自然子问题, 并为复杂性设定了几个上下限 。 我们证明准确的可达性问题至少和著名的平方根和问题一样困难, 但是, 令人鼓舞的是, 如果基本图表为人所知, 大约版本为$\mathbf{NP} $, 而确切的问题限制在恒定的边缘值是 $\mathb{P} 。 最后, 我们显示, 图表结构中的不确定性会影响复杂性, 以已知的 $\\\ b roqr= rogr= roglegr= rogralfr) 亚的硬 。