An $n$-queens configuration is a placement of $n$ mutually non-attacking queens on an $n\times n$ chessboard. The $n$-queens completion problem, introduced by Nauck in 1850, is to decide whether a given partial configuration can be completed to an $n$-queens configuration. In this paper, we study an extremal aspect of this question, namely: how small must a partial configuration be so that a completion is always possible? We show that any placement of at most $n/60$ mutually non-attacking queens can be completed. We also provide partial configurations of roughly $n/4$ queens that cannot be completed, and formulate a number of interesting problems. Our proofs connect the queens problem to rainbow matchings in bipartite graphs and use probabilistic arguments together with linear programming duality.


翻译:$n- queens 配置是将一美元的非攻击性皇后放在一个 $n_times nn_times n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_n_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
84+阅读 · 2020年12月5日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
8+阅读 · 2019年8月28日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月21日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2019年8月28日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员