Clustering algorithms partition a dataset into groups of similar points. The primary contribution of this article is the Multiscale Spatially-Regularized Diffusion Learning (M-SRDL) clustering algorithm, which uses spatially-regularized diffusion distances to efficiently and accurately learn multiple scales of latent structure in hyperspectral images (HSI). The M-SRDL clustering algorithm extracts clusterings at many scales from an HSI and outputs these clusterings' variation of information-barycenter as an exemplar for all underlying cluster structure. We show that incorporating spatial regularization into a multiscale clustering framework corresponds to smoother and more coherent clusters when applied to HSI data and leads to more accurate clustering labels.
翻译:集成算法将数据集分成相似的一组。 本条的主要贡献是多尺度空间分解传播学习(M-SRDL)群集算法,该算法使用空间正规化的传播距离,高效和准确地了解超光谱图像中多种潜在结构的规模。 M-SRDL群集算法从一个高光谱指数中在许多尺度上提取组群,并输出出这些组群作为所有基本群集结构的示例的信息-bary中心的变化。 我们显示,将空间正规化纳入一个多尺度集成框架,在应用高光谱图像数据时,与更平滑、更连贯的组群相对应,并导致更准确的组群标签。