A long-standing and difficult problem in, e.g., condensed matter physics is how to find the ground state of a complex many-body system where the potential energy surface has a large number of local minima. Spin systems containing complex and/or topological textures, for example spin spirals or magnetic skyrmions, are prime examples of such systems. We propose here a genetic-tunneling-driven variance-controlled optimization approach, and apply it to two-dimensional magnetic skyrmionic systems. The approach combines a local energy-minimizer backend and a metaheuristic global search frontend. The algorithm is naturally concurrent, resulting in short user execution time. We find that the method performs significantly better than simulated annealing (SA). Specifically, we demonstrate that for the Pd/Fe/Ir(111) system, our method correctly and efficiently identifies the experimentally observed spin spiral, skyrmion lattice and ferromagnetic ground states as a function of external magnetic field. To our knowledge, no other optimization method has until now succeeded in doing this. We envision that our findings will pave the way for evolutionary computing in mapping out phase diagrams for spin systems in general.
翻译:例如,浓缩物质物理学的长期和困难问题是,如何找到一个复杂多体系统的地面状态,在这个系统中,潜在的能源表面具有大量的局部微型。含有复杂和/或地形质谱的旋转系统,例如旋转螺旋或磁云,是这类系统的主要例子。我们在此建议一种基因疏松驱动的差异控制控制优化方法,并将其应用于二维磁性天磁系统。这种方法将本地的能量最小化器后端和一个美经力学全球搜索前端结合起来。算法自然是同时的,导致用户执行时间短。我们发现该方法的运行比模拟肛门系统(SA)要好得多。具体地说,我们证明,对于Pd/Fe/Ir(111)系统,我们的方法正确而有效地确定了实验性观测的螺旋、天空拉蒂和铁磁层地面是外部磁场的函数。根据我们的知识,迄今为止没有其他的优化方法能够成功完成这项工作。我们设想,我们的研究结果将为演进阶段的系统铺平图。</s>