A long-standing and difficult problem in, e.g., condensed matter physics is how to find the ground state of a complex many-body system where the potential energy surface has a large number of local minima. Spin systems containing complex and/or topological textures, for example spin spirals or magnetic skyrmions, are prime examples of such systems. We propose here a genetic-tunneling-driven variance-controlled optimization approach, and apply it to two-dimensional magnetic skyrmionic systems. The approach combines a local energy-minimizer backend and a metaheuristic global search frontend. The algorithm is naturally concurrent, resulting in short user execution time. We find that the method performs significantly better than simulated annealing (SA). Specifically, we demonstrate that for the Pd/Fe/Ir(111) system, our method correctly and efficiently identifies the experimentally observed spin spiral, skyrmion lattice and ferromagnetic ground states as a function of external magnetic field. To our knowledge, no other optimization method has until now succeeded in doing this. We envision that our findings will pave the way for evolutionary computing in mapping out phase diagrams for spin systems in general.


翻译:例如,浓缩物质物理学的长期和困难问题是,如何找到一个复杂多体系统的地面状态,在这个系统中,潜在的能源表面具有大量的局部微型。含有复杂和/或地形质谱的旋转系统,例如旋转螺旋或磁云,是这类系统的主要例子。我们在此建议一种基因疏松驱动的差异控制控制优化方法,并将其应用于二维磁性天磁系统。这种方法将本地的能量最小化器后端和一个美经力学全球搜索前端结合起来。算法自然是同时的,导致用户执行时间短。我们发现该方法的运行比模拟肛门系统(SA)要好得多。具体地说,我们证明,对于Pd/Fe/Ir(111)系统,我们的方法正确而有效地确定了实验性观测的螺旋、天空拉蒂和铁磁层地面是外部磁场的函数。根据我们的知识,迄今为止没有其他的优化方法能够成功完成这项工作。我们设想,我们的研究结果将为演进阶段的系统铺平图。</s>

0
下载
关闭预览

相关内容

第26届SPIN研讨会旨在将对软件分析和软件模型自动化工具技术感兴趣的研究人员和实践者聚集在一起,以进行验证和确认。研讨会特别关注并发软件,但不排除对顺序软件的分析。提交的资料包括理论结果、新算法、工具开发和经验评估。官网链接:https://conf.researchr.org/track/spin-2019/spin-2019-papers
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
14+阅读 · 2021年7月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员