We present here an original application of the non-negative matrix factorization (NMF) method, for the case of extra-financial data. These data are subject to high correlations between co-variables, as well as between observations. NMF provides a much more relevant clustering of co-variables and observations than a simple principal component analysis (PCA). In addition, we show that an initial data separation step before applying NMF further improves the quality of the clustering.
翻译:我们在此介绍非负矩阵因子化(NMF)方法的原始应用,用于财务外数据,这些数据取决于共同变量之间以及观测结果之间的高度关联性,NMF提供的共同变量和观测组合比简单的主要组成部分分析(PCA)更具相关性。 此外,我们表明,在应用NMF之前的初始数据分离步骤进一步提高了组合的质量。