A key challenge for automatic speech recognition (ASR) systems is to model the speaker level variability. In this paper, compact speaker dependent learning hidden unit contributions (LHUC) are used to facilitate both speaker adaptive training (SAT) and test time unsupervised speaker adaptation for state-of-the-art Conformer based end-to-end ASR systems. The sensitivity during adaptation to supervision error rate is reduced using confidence score based selection of the more "trustworthy" subset of speaker specific data. A confidence estimation module is used to smooth the over-confident Conformer decoder output probabilities before serving as confidence scores. The increased data sparsity due to speaker level data selection is addressed using Bayesian estimation of LHUC parameters. Experiments on the 300-hour Switchboard corpus suggest that the proposed LHUC-SAT Conformer with confidence score based test time unsupervised adaptation outperformed the baseline speaker independent and i-vector adapted Conformer systems by up to 1.0%, 1.0%, and 1.2% absolute (9.0%, 7.9%, and 8.9% relative) word error rate (WER) reductions on the NIST Hub5'00, RT02, and RT03 evaluation sets respectively. Consistent performance improvements were retained after external Transformer and LSTM language models were used for rescoring.


翻译:自动语音识别( ASR) 系统的关键挑战是如何模拟语音识别( ASR) 。 在本文中, 精密的演讲人依赖学习隐藏单位贡献( LHUC) 被用于促进演讲人的适应性培训( SAT) 和测试无监督的演讲人时间, 以适应基于端对端的基于端对端 ASR 系统。 调适监管错误率的敏感度, 使用基于信任的比分选择更“ 可信赖”的演讲人特定数据, 降低对监督错误率的敏感度。 在作为信任分数之前, 使用一个信心估计模块来平息过度自信的 Condecter decoder 输出概率。 使用巴伊西亚对 LHUC 参数的估算, 和测试时间为300小时的切换式显示, 以信任为基础的拟议的 LHUHC- SAT 组合在测试时间上比基准演讲人独立, 和i- Victor 调整的Conforect 系统, 达到1. 0%, 绝对值 (9.0 %, 7. 和 8. 相对) 错误率 数据选择。 在 NISISIS5 的外部改进后, 5 和REM5 格式中分别使用了REM 和REM 3 的不断的软件改进。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员