Understanding the meaning of a text is a fundamental challenge of natural language understanding (NLU) research. An ideal NLU system should process a language in a way that is not exclusive to a single task or a dataset. Keeping this in mind, we have introduced a novel knowledge driven semantic representation approach for English text. By leveraging the VerbNet lexicon, we are able to map syntax tree of the text to its commonsense meaning represented using basic knowledge primitives. The general purpose knowledge represented from our approach can be used to build any reasoning based NLU system that can also provide justification. We applied this approach to construct two NLU applications that we present here: SQuARE (Semantic-based Question Answering and Reasoning Engine) and StaCACK (Stateful Conversational Agent using Commonsense Knowledge). Both these systems work by "truly understanding" the natural language text they process and both provide natural language explanations for their responses while maintaining high accuracy.
翻译:理解文本的含义是自然语言理解( NLU) 研究的一个基本挑战。 理想的NLU 系统应该以一种不排斥单一任务或数据集的方式处理一种语言。 牢记这一点, 我们为英语文本采用了一种由知识驱动的新颖语义表达法。 通过利用 VerbNet 词汇, 我们可以将文本的语法树映射为使用基本知识原始语言表达的常识含义。 我们方法中体现的一般目的知识可以用来构建任何基于推理的NLU 系统, 该系统也可以提供理由。 我们用这个方法构建我们在此介绍的两个 NLU 应用程序: Square (基于语言的问答和解释引擎) 和 StaCACK (使用常识知识的状态调控剂 ) 。 这两个系统都通过“ 精通理解” 它们处理的自然语言文本, 并为它们的反应提供自然语言解释, 同时保持高准确性。