The study of trajectories resulting from the motion of particles, objects or animals is often the core task in many research fields such as biology or robotics. The challenges in the process extend from how to get a trajectory from raw sensor data (e.g., when tracking) to what kind of statistical tools should be used for modeling or making inferences about populations. This work introduces a software library that addresses the problem as a whole. It contains, for instance, a robust tracking module aiming to make data acquisition handy. Furthermore, it provides a statistical kit for analyzing trajectories, namely, correlation functions, spectral density, parameter estimation, filters, stochastic models to fit against simulations (e.g., the classical Langevin model), among others. Unlike other trajectory analysis software, this library does not make assumptions about the nature of trajectories (e.g., those from GPS), which facilitates its usage across different disciplines. We validated the software by reproducing key results of different original research articles. An example script in each case is presented. We aim to provide researchers with limited experience in programming or computer vision with an easy-to-handle toolbox to manipulate trajectory data.


翻译:微粒、物体或动物运动产生的轨迹研究往往是许多研究领域的核心任务,例如生物学或机器人学。这一过程的挑战包括如何从原始传感器数据(例如,跟踪)中获得轨迹,到应使用何种统计工具来模拟或推断人口。这项工作引入了一个软件库,从整体上解决问题。例如,它包含一个旨在方便地获取数据的强有力的跟踪模块。此外,它提供了一个统计工具包,用于分析轨迹,即相关功能、光谱密度、参数估计、过滤器、随机模型,以适应模拟(例如古典兰格文模型)等。与其他轨迹分析软件不同,这个图书馆不假定轨道的性质(例如,全球定位系统),以便利其在不同学科的使用。我们通过复制不同原创研究文章的关键结果对软件进行了验证。每个案例都介绍了一个脚本。我们的目标是向研究人员提供程序或计算机轨迹方面的有限经验,以简单易变工具为工具。我们的目标是向研究人员提供易于变换的数据。

0
下载
关闭预览

相关内容

医学人工智能AIM(Artificial Intelligence in Medicine)杂志发表了多学科领域的原创文章,涉及医学中的人工智能理论和实践,以医学为导向的人类生物学和卫生保健。医学中的人工智能可以被描述为与研究、项目和应用相关的科学学科,旨在通过基于知识或数据密集型的计算机解决方案支持基于决策的医疗任务,最终支持和改善人类护理提供者的性能。 官网地址:http://dblp.uni-trier.de/db/journals/artmed/
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员