The decidability and complexity of reachability problems and model-checking for flat counter machines have been explored in detail. However, only few results are known for flat (lossy) FIFO machines, only in some particular cases (a single loop or a single bounded expression). We prove, by establishing reductions between properties, and by reducing SAT to a subset of these properties that many verification problems like reachability, non-termination, unboundedness are NP-complete for flat FIFO machines, generalizing similar existing results for flat counter machines. We also show that reachability is NP-complete for flat lossy FIFO machines and for flat front-lossy FIFO machines. We construct a trace-flattable system of many counter machines communicating via rendez-vous that is bisimilar to a given flat FIFO machine, which allows to model-check the original flat FIFO machine. Our results lay the theoretical foundations and open the way to build a verification tool for (general) FIFO machines based on analysis of flat sub-machines.
翻译:详细探讨了可达性问题和平板反射机模型检查的可达性与复杂性,然而,对于平式(损失)FIFO机器,只在某些特定情况下(单一环或单一条框表达式),只知道很少的结果。 我们通过在属性之间确定减少,将SAT降低到这些属性的一组,证明许多核查问题,如可达性、非封闭性、无约束性等,对于平式FIFO机器来说是NP-完整的,对平式反射机来说是类似的现有结果。 我们还表明,对于平式丢失FIFO机器和平式前损FIFO机器来说,可达性是NP-完全的。我们建造了一个微缩缩式系统,许多通过重合式通信的反控机器,与给定的FIFIFO机器是两码的,可以模拟FIFIFO机器的原始固定式检查。我们的结果为理论基础,为基于对平式子机器的分析为(一般)FIFIFO机器建立核查工具开辟了道路。