The concept of p-ordering for a prime p was introduced by Manjul Bhargava (in his PhD thesis) to develop a generalized factorial function over an arbitrary subset of integers. This notion of p-ordering provides a representation of polynomials modulo prime powers, and has been used to prove properties of roots sets modulo prime powers. We focus on the complexity of finding a p-ordering given a prime p, an exponent k and a subset of integers modulo p^k. Our first algorithm gives a p-ordering for set of size n in time O(nk\log p), where set is considered modulo p^k. The subsets modulo p^k can be represented succinctly using the notion of representative roots (Panayi, PhD Thesis, 1995; Dwivedi et.al, ISSAC, 2019); a natural question would be, can we find a p-ordering more efficiently given this succinct representation. Our second algorithm achieves precisely that, we give a p-ordering in time O(d^2k\log p + nk \log p + nd), where d is the size of the succinct representation and n is the required length of the p-ordering. Another contribution that we make is to compute the structure of roots sets for prime powers p^k, when k is small. The number of root sets have been given in the previous work (Dearden and Metzger, Eur. J. Comb., 1997; Maulick, J. Comb. Theory, Ser. A, 2001), we explicitly describe all the root sets for p^2, p^3 and p^4.
翻译:Manjul Bhargava (在其博士论文中) 引入了初级 p 的 p 排序概念, 以在任意的整数子集中开发一个通用的元素函数。 p- 排序概念提供了多式模调主要力量的表示, 并被用于证明根部设置模调主要力量的属性。 我们集中关注在质点 p、 Expent k 和 整数 mutul pQk 中找到 p- 顺序的复杂性。 我们的第一种算法给出了在时间( O (nk\log p) 中设定的大小的 pn( nk\log p) 的 p- k。 集集集点可以使用代表性根点的概念( Panayi, Drent Thesis, 1995; Dwivedi et.al, ISAC, 2019; 自然的问题是, 我们能否在这种简洁的表述中找到一个 p- 顺序。 我们的第二个算法准确地说, 我们给时间( d) 明确的 O (d) der- k) 4, com\\\\\\\\ comal prial roup strate strate strate strate strate stration strate) pres strate stration strual strual strationsum proup rum proup roup ration.