This paper develops asymptotic normality results for individual coordinates of robust M-estimators with convex penalty in high-dimensions, where the dimension $p$ is at most of the same order as the sample size $n$, i.e, $p/n\le\gamma$ for some fixed constant $\gamma>0$. The asymptotic normality requires a bias correction and holds for most coordinates of the M-estimator for a large class of loss functions including the Huber loss and its smoothed versions regularized with a strongly convex penalty. The asymptotic variance that characterizes the width of the resulting confidence intervals is estimated with data-driven quantities. This estimate of the variance adapts automatically to low ($p/n\to0)$ or high ($p/n \le \gamma$) dimensions and does not involve the proximal operators seen in previous works on asymptotic normality of M-estimators. For the Huber loss, the estimated variance has a simple expression involving an effective degrees-of-freedom as well as an effective sample size. The case of the Huber loss with Elastic-Net penalty is studied in details and a simulation study confirms the theoretical findings. The asymptotic normality results follow from Stein formulae for high-dimensional random vectors on the sphere developed in the paper which are of independent interest.
翻译:本文为强健的M- 测算器个人坐标开发了无症状的正常度结果, 该测算器的单个坐标在高二调中具有共性, 其维度的美元值与样本大小的美元( 即, 美元/ n\le\gamma$) 基本相同, 即, 美元/ n\le\ gama$, 在一个固定的常量 $\ gamma> 0 美元 中, 美元/ np/ n\le\ gama$ 。 无症状的正常度要求纠正偏差, 并且为包括 HUber 损失及其平滑版本的正常度, 并带有强烈的共性罚款。 由此得出的信任度宽度的偏差性差异, 以数据驱动的数量来估计。 对差异的估计值自动适应低( 美元/ n\\ 美元) 或高 美元( / n\ le\ gamma$) 的常量值, 且不包含先前工作所看到的关于M- 估测算器正常度正常值的操作者。 估计差异有一个简单的表达式表达式表达式表达式表达式表达式表达式的表达式表达式表达式表达式,, 自由度的利息范围是用于对标准的深度研究, 和对结果的深度分析结果的深度的深度的深度的深度, 的深度, 的深度, 。