We introduce a new methodology for two-sample testing of high-dimensional linear regression coefficients without assuming that those coefficients are individually estimable. The procedure works by first projecting the matrices of covariates and response vectors along directions that are complementary in sign in a subset of the coordinates, a process which we call 'complementary sketching'. The resulting projected covariates and responses are aggregated to form two test statistics. We show that our procedure has essentially optimal asymptotic power under Gaussian designs with a general class of design covariance matrices when the difference between the two regression coefficients is sparse and dense respectively. Simulations confirm that our methods perform well in a broad class of settings.


翻译:我们引入了一种新的方法,用于对高维线性回归系数进行二类测试,而不必假设这些系数是个人可估量的。程序是首先在坐标的一个子块上沿着补充标志的方位预测共变矢量和反应矢量矩阵,我们称之为“补充草图”的过程。因此,预测的共变量和反应将汇总成两个测试统计数据。我们表明,在两种回归系数的差别分别是稀少和密集的情况下,我们的程序在高斯设计下基本上具有最佳的无药可耐力,在设计共变矩阵中具有一般类型的设计变量。模拟证实我们的方法在广泛的环境类别中表现良好。

0
下载
关闭预览

相关内容

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
已删除
将门创投
4+阅读 · 2017年7月7日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
已删除
将门创投
4+阅读 · 2017年7月7日
Top
微信扫码咨询专知VIP会员