This paper proposes a method for estimating the effect of a policy intervention on an outcome over time. We train recurrent neural networks (RNNs) on the history of control unit outcomes to learn a useful representation for predicting future outcomes. The learned representation of control units is then applied to the treated units for predicting counterfactual outcomes. RNNs are specifically structured to exploit temporal dependencies in panel data, and are able to learn negative and nonlinear interactions between control unit outcomes. We apply the method to the problem of estimating the long-run impact of U.S. homestead policy on public school spending.
翻译:本文提出一种方法,用以估计政策干预对一段时间内结果的影响。我们训练经常神经网络(RNN)了解控制单位结果的历史,学习如何以有用的代表方式预测未来结果。然后,对经处理的单位应用所学到的控制单位代表性来预测反事实结果。控制单位的具体结构是利用小组数据中的时间依赖性,并能够了解控制单位结果之间的负面和非线性互动。我们用这种方法来估计美国住家政策对公立学校支出的长期影响。