In this work, we propose a Fourier series-based approximation method using ensemble Kalman filtering to estimate time-varying parameters in deterministic dynamical systems. We demonstrate the capability of this approach in estimating both sinusoidal and polynomial forcing parameters in a mass-spring system. Results emphasize the importance of the choice of frequencies in the approximation model terms on the corresponding time-varying parameter estimates.
翻译:在这项工作中,我们提议了一种基于Fourier序列的近似法,使用混合Kalman过滤法来估计确定性动态系统中的时间变化参数。我们展示了这种方法在大规模源码系统中估算正弦形参数和多元强迫参数的能力。结果强调了在相应的时间变化参数估计中选择近似模型术语中的频率的重要性。