We study the conservation properties of the Hermite-discontinuous Galerkin (Hermite-DG) approximation of the Vlasov-Maxwell equations. In this semi-discrete formulation, the total mass is preserved independently for every plasma species. Further, an energy invariant exists if central numerical fluxes are used in the DG approximation of Maxwell's equations, while a dissipative term is present when upwind fluxes are employed. In general, traditional temporal integrators might fail to preserve invariants associated with conservation laws (at the continuous or semi-discrete level) during the time evolution. Hence, we analyze the capability of explicit and implicit Runge-Kutta (RK) temporal integrators to preserve such invariants. Since explicit RK methods can only ensure preservation of linear invariants but do not provide any control on the system energy, we develop a novel class of nonlinear explicit RK schemes. The proposed methods can be tuned to preserve the energy invariant at the continuous or semi-discrete level, a distinction that is important when upwind fluxes are used in the discretization of Maxwell's equations since upwind provides a numerical source of energy dissipation that is not present when central fluxes are used. We prove that the proposed methods are able to preserve the energy invariant and to maintain the semi-discrete energy dissipation (if present) according to the discretization of Maxwell's equations. An extensive set of numerical experiments corroborates the theoretical findings. It also suggests that maintaining the semi-discrete energy dissipation when upwind fluxes are used leads to an overall better accuracy of the method relative to using upwind fluxes while forcing exact energy conservation.
翻译:我们研究的是Vlasov-Maxwell等式的赫尔米特不连续的Galerkin(Hermite-DG)近似值的保存特性。 在这种半分解配方中,总质量为每个等离子物种独立保存。 此外,如果在最大韦尔等式的DG近似中使用中央数字通量,而当使用上风通量时,则存在一个消散术语。一般来说,传统的时间整合器可能无法在时间演变期间保存与保护法(连续或半分解水平)相关的变异方程式。因此,我们分析显性和隐含的Ringe-Kutta(RK)时间融合器的能力,以保存这种变异性。由于明确的浓缩方法只能确保线性变异性,但不能对系统能源提供任何控制,因此我们开发了一个新型的非线性直线式的离心计划。 拟议的方法可以在连续或半分解级水平上保持能量的异变异性,因此,我们分析清晰的流- Kutreal devoilal divilational divational 。 当使用时,我们使用的能量流的能量流法是使用时,一个重要的数字变的变的变异性的方法是数字, 当使用时,我们使用的变的变的变的流法是用来的变的变的变的变异性的方法是用来的变的变。