Digital watermark is a commonly used technique to protect the copyright of medias. Simultaneously, to increase the robustness of watermark, attacking technique, such as watermark removal, also gets the attention from the community. Previous watermark removal methods require to gain the watermark location from users or train a multi-task network to recover the background indiscriminately. However, when jointly learning, the network performs better on watermark detection than recovering the texture. Inspired by this observation and to erase the visible watermarks blindly, we propose a novel two-stage framework with a stacked attention-guided ResUNets to simulate the process of detection, removal and refinement. In the first stage, we design a multi-task network called SplitNet. It learns the basis features for three sub-tasks altogether while the task-specific features separately use multiple channel attentions. Then, with the predicted mask and coarser restored image, we design RefineNet to smooth the watermarked region with a mask-guided spatial attention. Besides network structure, the proposed algorithm also combines multiple perceptual losses for better quality both visually and numerically. We extensively evaluate our algorithm over four different datasets under various settings and the experiments show that our approach outperforms other state-of-the-art methods by a large margin. The code is available at http://github.com/vinthony/deep-blind-watermark-removal.
翻译:数字水标记是一种常用的技术, 用来保护媒体的版权。 同时, 为了提高水标记的稳健性, 攻击技术, 如去除水标记等技术, 也引起社区的注意。 以前的水标记清除方法需要从用户处获得水标记位置, 或者训练多任务网络, 以便不加区别地恢复背景。 但是, 当共同学习时, 网络在水标记检测方面的表现比恢复质谱要好。 受此观察的启发, 为了盲目清除可见的水标记, 我们提议了一个新型的两阶段框架, 配有一个堆叠式的注意力引导的ResUNet, 以模拟探测、 清除和改良的过程。 在第一阶段, 我们设计了一个名为 SplitNet 的多任务网络。 它需要从用户那里获得水标记位置或训练一个多任务特性的网络, 以不同的频道关注点 。 然后, 我们设计了 RefineNet 网络, 来平滑动水标记区域。 除了网络结构外, 拟议的算法还结合多重概念损失, 以更好的质量 和数字- balblearal roalb roal rode 方法 。 我们广泛评估了四种不同的算法 。 。 。 以大的 正在 以不同的 dalbralation 展示其他方法 。